Tetrathiomolybdate inhibits copper trafficking proteins through metal cluster formation.

نویسندگان

  • Hamsell M Alvarez
  • Yi Xue
  • Chandler D Robinson
  • Mónica A Canalizo-Hernández
  • Rebecca G Marvin
  • Rebekah A Kelly
  • Alfonso Mondragón
  • James E Penner-Hahn
  • Thomas V O'Halloran
چکیده

Tetrathiomolybdate (TM) is an orally active agent for treatment of disorders of copper metabolism. Here we describe how TM inhibits proteins that regulate copper physiology. Crystallographic results reveal that the surprising stability of the drug complex with the metallochaperone Atx1 arises from formation of a sulfur-bridged copper-molybdenum cluster reminiscent of those found in molybdenum and iron sulfur proteins. Spectroscopic studies indicate that this cluster is stable in solution and corresponds to physiological clusters isolated from TM-treated Wilson's disease animal models. Finally, mechanistic studies show that the drug-metallochaperone inhibits metal transfer functions between copper-trafficking proteins. The results are consistent with a model wherein TM can directly and reversibly down-regulate copper delivery to secreted metalloenzymes and suggest that proteins involved in metal regulation might be fruitful drug targets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tetrathiomolybdate inhibition of the Enterococcus hirae CopB copper ATPase.

Tetrathiomolybdate (TTM) avidly interacts with copper and has recently been employed to reduce excess copper in patients with Wilson disease. We found that TTM inhibits the purified Enterococcus hirae CopB copper ATPase with an IC(50) of 34 nM. Dithiomolybdate and trithiomolybdate, which commonly contaminate TTM, inhibited the copper ATPases with similar potency. Inhibition could be reversed by...

متن کامل

Copper in plants

Copper is an essential metal for normal plant growth and development, although it is also potentially toxic. Copper participates in numerous physiological processes and is an essential cofactor for many metalloproteins, however, problems arise when excess copper is present in cells. Excess copper inhibits plant growth and impairs important cellular processes (i.e., photosynthetic electron trans...

متن کامل

Zinc pyrithione inhibits yeast growth through copper influx and inactivation of iron-sulfur proteins.

Zinc pyrithione (ZPT) is an antimicrobial material with widespread use in antidandruff shampoos and antifouling paints. Despite decades of commercial use, there is little understanding of its antimicrobial mechanism of action. We used a combination of genome-wide approaches (yeast deletion mutants and microarrays) and traditional methods (gene constructs and atomic emission) to characterize the...

متن کامل

Copper chelation by tetrathiomolybdate inhibits lipopolysaccharide-induced inflammatory responses in vivo.

Redox-active transition metal ions, such as iron and copper, may play an important role in vascular inflammation, which is an etiologic factor in atherosclerotic vascular diseases. In this study, we investigated whether tetrathiomolybdate (TTM), a highly specific copper chelator, can act as an anti-inflammatory agent, preventing lipopolysaccharide (LPS)-induced inflammatory responses in vivo. F...

متن کامل

Tumor Growth and Angiogenesis Copper Deficiency Induced by Tetrathiomolybdate Suppresses

Copper plays an essential role in promoting angiogenesis. Tumors that become angiogenic acquire the ability to enter a phase of rapid growth and exhibit increased metastatic potential, the major cause of morbidity in cancer patients. We report that copper deficiency induced by tetrathiomolybdate (TM) significantly impairs tumor growth and angiogenesis in two animal models of breast cancer: an i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 327 5963  شماره 

صفحات  -

تاریخ انتشار 2010